A  A  A   Print
Atrial Septal Defect (ASD)Comunicación Interauricular (CIA)

Atrial Septal Defect (ASD)

What is an atrial septal defect?

Anatomy of the heart, normal
Click Image to Enlarge

An atrial septal defect is an opening in the atrial septum. The atrial septum is the dividing wall between the two upper chambers of the heart (right and left atria). SD can be a congenital (present at birth) heart defect, or it can result from the failure of normal postnatal closure of a hole that is present in the heart of every fetus.  

Normally, oxygen-poor (blue) blood returns to the right atrium from the body, travels to the right ventricle, then is pumped into the lungs where it receives oxygen. Oxygen-rich (red) blood returns to the left atrium from the lungs, passes into the left ventricle, and then is pumped out to the body through the aorta.

An atrial septal defect allows oxygen-rich (red) blood to pass from the left atrium, through the opening in the septum, and then mix with oxygen-poor (blue) blood in the right atrium.

Illustration of the anatomy of a heart with an atrial septal defect
Click Image to Enlarge

Atrial septal defects occur in a small percentage of children born with congenital heart disease. For unknown reasons, girls have atrial septal defects twice as often as boys.

What causes an atrial septal defect?

The heart is forming during the first 8 weeks of fetal development. It begins as a hollow tube, then partitions within the tube develop that eventually become the septa (or walls) dividing the right side of the heart from the left. Atrial septal defects usually occur when the partitioning process does not occur completely, leaving an opening in the atrial septum.

Some congenital heart defects may have a genetic link occurring due to a defect in a gene causing heart problems to occur more often in certain families. Most atrial septal defects occur by chance, with no clear reason for their development.

What are the types of atrial septal defects?

There are four major types of atrial septal defects:

  • Ostium secundum atrial septal defect. This is the most common atrial septal defect, affecting over two-thirds of people with atrial septal defects. It is caused when a part of the atrial septum fails to close completely while the heart is developing. This causes an opening to develop in the center of the wall separating the two atria.

  • Ostium primum atrial septal defect. This defect is part of atrioventricular canal defects, and is associated with a split (cleft) in one of the leaflets of the mitral valve.

  • Sinus venosus atrial septal defect. This defect occurs at the superior vena cava and right atrium junction, in the area where the right pulmonary veins enter the heart. As a result, the drainage of one or more of the pulmonary veins may be abnormal in that the pulmonary veins drain to the right atrium, rather than the left atrium. 

  • Coronary sinus atrial septal defect. This defect is located within the wall of the coronary sinus, where it passes behind the left atrium. The coronary sinus carries the blood flow from the heart's own vein, into the right atrium. It is the rarest of all atrial septal defects.

Why is an atrial septal defect a concern?

This heart defect can over time cause lung problems if not repaired. When blood passes through the ASD from the left atrium to the right atrium, a larger volume of blood than normal must be handled by the right side of the heart. This extra blood passes through the pulmonary artery into the lungs, causing higher amounts of blood flow than normal in the vessels in the lungs.

A small opening in the atrial septum allows a small amount of blood to pass through from the left atrium to the right atrium. A large opening allows more blood to pass through and mix with the normal blood flow in the right heart.

The lungs are able to cope with this extra blood flow for a long period of time. In some patients, the extra blood flow eventually raises the blood pressure in the lungs, usually after several decades. This then hardens the blood vessels in the lungs, causing them to be diseased, resulting in irreversible changes in the lungs.

What are the symptoms of an atrial septal defect?

Many children have no symptoms and seem healthy. However, if the ASD is large, permitting a large amount of blood to pass through to the right side of the heart, the right atrium, right ventricle, and lungs will become overworked, and symptoms may be noted. Many children with ASD will have no symptoms. Some children, however, may have the following:

  • Child tires easily when playing

  • Fatigue

  • Rapid breathing

  • Shortness of breath

  • Poor growth

  • Frequent respiratory infections

The symptoms of an atrial septal defect may resemble other medical conditions or heart problems. Always consult your child's physician for a diagnosis.

How is an atrial septal defect diagnosed?

Your child's doctor may have heard a heart murmur during a physical exam, and referred your child to a pediatric cardiologist for a diagnosis. In this case, the heart murmur is caused by the extra blood from the ASD flowing through the pulmonary valve.

A pediatric cardiologist specializes in the diagnosis and medical management of congenital heart defects, as well as heart problems that may develop later in childhood. The cardiologist will do a physical exam, listen to the heart and lungs, and make other observations that help in the diagnosis. The location within the chest that the murmur is heard best, as well as the loudness and quality of the murmur (harsh, blowing, etc.) will give the cardiologist an initial idea of which heart problem your child may have. Diagnostic testing for congenital heart disease varies by the child's age, clinical condition, and institutional preferences. Some tests that may be recommended include the following:

  • Chest X-ray. A diagnostic test which uses invisible X-ray beams to produce images of internal tissues, bones, and organs onto film. With an ASD, the heart may be enlarged because the right atrium and ventricle have to handle larger amounts of blood flow than normal. Also, there may be changes that take place in the lungs due to extra blood flow that can be seen on an X-ray.

  • Electrocardiogram (ECG). A test that records the electrical activity of the heart, shows abnormal rhythms (arrhythmias or dysrhythmias), and detects heart muscle stress.

  • Echocardiogram (echo). A procedure that evaluates the structure and function of the heart by using sound waves recorded on an electronic sensor that produce a moving picture of the heart and heart valves. An echo can show the pattern of blood flow through the atrial septal opening, and determine how large the opening is, as well as how much blood is passing through it.

  • Cardiac catheterization. A cardiac catheterization is an invasive procedure that gives very detailed information about the structures inside the heart. Under sedation, a small, thin, flexible tube (catheter) is inserted into a blood vessel in the groin, and guided to the inside of the heart. Blood pressure and oxygen measurements are taken in the four chambers of the heart, as well as the pulmonary artery and aorta. Contrast dye is also injected to more clearly visualize the structures inside the heart. Although an echocardiogram often provides enough diagnostic information, in certain circumstances, device closure of the ASD can be done at the time of the catheterization.

Treatment for atrial septal defect

Specific treatment for ASD will be determined by your child's physician based on:

  • Your child's age, overall health, and medical history

  • Extent of the disease

  • Your child's tolerance for specific medications, procedures, or therapies

  • Expectations for the course of the disease

  • Your opinion or preference

Secundum atrial septal defects may close spontaneously as a child grows. Once an atrial septal defect is diagnosed, your child's cardiologist will evaluate your child periodically to see whether it is closing on its own. Usually, an ASD will be repaired if it has not closed on its own by the time your child starts school. This is to prevent lung problems that will develop from long-time exposure to extra blood flow. The decision to close the ASD may also depend on the size of the defect. Atrial septal defects are typically repaired in childhood to prevent problems later in life.

Treatment may include:

  • Medical management. Many children have no symptoms, and require no medications. However, in rare circumstances, children may need to take medications to help their heart work better, since the right side is under strain from the extra blood passing through the ASD. Medications may be prescribed, such as diuretics. Diuretics help the kidneys remove excess fluid from the body. This may be necessary because the body's water balance can be affected when the heart is not working as well as it could.

  • Surgical repair. Your child's ASD may be repaired surgically in the operating room. The surgical repair is done under general anesthesia. The defect may be closed with stitches or a special patch.

  • Device closure. Device closure is frequently done for secundum ASD, depending on the size of the defect and the weight of the child. During the cardiac catheterization procedure, the child is sedated and a small, thin, flexible tube (catheter) is inserted into a blood vessel in the groin and guided to the inside of the heart. Once the catheter is in the heart, the cardiologist will pass a special device, called a septal occluder, into the open ASD, preventing blood from flowing through it.

After surgical repair

In most cases, children will spend time in the intensive care unit (ICU) for several hours, or overnight, after an ASD repair. During the first several hours after surgery, your child will most likely be drowsy from the anesthesia that was used during the operation, and from medications given to relax him or her and to help with pain. As time goes by, your child will become more alert.
While your child is in the ICU, special equipment will be used to help him or her recover, and may include the following:

  • Ventilator. A machine that helps your child breathe while he or she is under anesthesia during the operation. A small, plastic tube is guided into the windpipe and attached to the ventilator, which breathes for your child while he or she is too sleepy to breathe effectively on his or her own. Many children have the ventilator tube removed right after surgery, but some other children will benefit from remaining on the ventilator for a few hours afterwards, or overnight, so they can rest.

  • Intravenous (IV) catheters. Small, plastic tubes inserted through the skin into blood vessels to provide IV fluids and important medications that help your child recover from the operation.

  • Arterial line. A specialized IV placed in the wrist, or other area of the body where a pulse can be felt, that measures blood pressure continuously during surgery and while your child is in the ICU.

  • Nasogastric (NG) tube. A small, flexible tube that keeps the stomach drained of acid and gas bubbles that may build up during surgery.

  • Urinary catheter. A small, flexible tube that allows urine to drain out of the bladder and accurately measures how much urine the body makes, which helps determine how well the heart is functioning. After surgery, the heart will be a little weaker than it was before; the body may start to hold onto fluid, causing swelling and puffiness. Diuretics may be given to help the kidneys remove excess fluids from the body.

  • Chest tube. A drainage tube may be inserted to keep the chest free of blood that would otherwise accumulate after the incision is closed. Bleeding may occur for several hours, or even a few days after surgery.

  • Heart monitor. A machine that constantly displays a picture of your child's heart rhythm, and monitors heart rate, arterial blood pressure, and other values.

Your child may need other equipment, not mentioned here, to provide support while in the ICU, or afterwards. The hospital staff will explain all of the necessary equipment to you.

Your child will be kept as comfortable as possible with several different medications; some of which relieve pain and some of which relieve anxiety. The staff may also ask for your input as to how best to soothe and comfort your child.

After discharge from the ICU, your child will recuperate on another hospital unit for a few days before going home. You will learn how to care for your child at home before your child is discharged. Your child may need to take medications for a while and these will be explained to you. The staff will provide instructions regarding medications, activity limitations, and follow-up appointments before your child is discharged.

Care for your child at home following ASD repair

Most children feel comfortable when they go home, and have a fair tolerance for activity. Your child may become tired quicker than before the repair, but usually will be allowed to play with supervision, while avoiding blows to the chest that might cause injury to the incision or breastbone. Within a few weeks, your child should be fully recovered and able to participate in normal activity.

Pain medications, such as acetaminophen or ibuprofen, may be recommended to keep your child comfortable at home. Your child's doctor will discuss pain control before your child is discharged from the hospital.

Long-term outlook after ASD repair

The majority of children who have had an atrial septal defect repair will live healthy lives. Your child's cardiologist may recommend that your child take antibiotics to prevent bacterial endocarditis for a specific time period after discharge from the hospital.

Outcomes also depend on the type of ASD, as well as how early in life the ASD was diagnosed and whether or not it was repaired. With early diagnosis and repair of an ASD, the outcome is generally excellent, and minimal follow-up is necessary. When an ASD is diagnosed later in life, if complications occur after surgical closure, or the ASD is never repaired, the outlook may be worse than normal. There is a risk of developing pulmonary hypertension (high blood pressure in the blood vessels of the lungs) or Eisenmenger's syndrome. These people should receive follow-up care at a center that specializes in congenital heart disease.

Consult your child's doctor regarding the specific outlook for your child.

 
Related Items

The third-party content provided in the Health Library of phoebeputney.com is for informational purposes only and is not designed to diagnose or treat a health problem or disease, or replace the professional medical advice you receive from your physician. If you or your child has or suspect you may have a health problem, please consult your primary care physician. If you or your child may have a medical emergency, call your doctor or 911 or other emergency health care provider immediately in the United States or the appropriate health agency of your country. For more information regarding site usage, please visit: Privacy Information, Terms of Use or Disclaimer.

Follow us online:

© 2014 Phoebe Putney Health System  |  417 Third Avenue, Albany, Georgia 31701  |  Telephone 877.312.1167

Phoebe Putney Health System is a network of hospitals, family medicine clinics, rehab facilities, auxiliary services, and medical education training facilities. Founded in 1911,
Phoebe Putney Memorial Hospital (the flagship hospital) is one of Georgia's largest comprehensive regional medical centers. From the beginning, Phoebe's mission and vision
has been to bring the finest medical talent and technology to the citizens of Southwest Georgia, and to serve all citizens of the community regardless of ability to pay.